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Abstract 

The paper considers two alternative approaches to modelling of dependence 
between steels alloying components quantities and their obtained after thermal 
treatment characteristics- nonlinear regression models and neural network 
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models. The obtained two kinds of models are further applied for optimization of 
the steels compositions aimed at obtaining better mechanical characteristics. The 
optimization procedures were multiple objective mathematical programming 
(MOMP) approach using nonlinear regression model and gradient descent 
optimization procedure using neural network model. The obtained by both 
approaches results are compared with respect to the quality of models and 
characteristics of theoretically obtained steel compositions. 

1. Introduction 

Production of high strength steel alloys is of big importance for the 
modern metallurgy. The main aim is to obtain high quality materials 
reducing quantity of used expensive compounds. Another ecologically 
motivated reason to work on steels composition optimization is obtaining 
of ultra high strength steels (from the lower right part of the Figure 1) 
that will allow production of lighter machines- goal that will result 
finally in reduction of 2CO  emmisions in the atmosphere. 

 

Figure 1. Steel’s types  dependence on their mechanical  characteristics. 

For achieving of this goals, first step is modelling of steels’ strength 
characteristics in dependence on their composition. Further these models 
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could be user for simulation and optimization of the steels’ composition. 
Usually, modelling in such cases uses the so-called “response surface 
methodology” [2] that applies regression dependences (in that case, 
usually nonlinear ones) between input and output variables. However, 
this approach can not always cope with complex nonlinear dependences 
in MIMO case. The application of intelligent modelling approaches such 
as neural networks is relatively new in this area, but there are some 
examples in the literature concerning other types of alloys [4, 7, 8]. From 
the other hand, it is known that neural networks are universal 
approximations of complex nonlinear dependences that apply “black-box” 
modelling approach [1, 3, 12]. So, they are proper candidates for 
modelling structure in the considered here task. 

In any case, the identified high dimensional MIMO models are used 
further for solving of multicriteria optimization task. The multiple 
objective mathematical programming (MOMP) approach was usually 
applied in case of regression models. In the case of neural network 
models, another useful characteristic of them can be applied in 
optimization procedures: neural networks are able to accumulate 
knowledge by experience by using training procedures that are in fact 
optimization of neural network weights with respect to error at neural 
network output [12, 13]; thus, neural network training procedures offer a 
common approach to optimization tasks in process optimization and 
control applications [11, 12, 14]. 

In previous authors works, the approach described in [13] was 
successfully applied to dynamic optimization [5] as well as to optimization 
of cultural media composition and initial conditions [6] for two kind of 
biotechnological process that are other examples of highly nonlinear 
system. 

In the present paper, both nonlinear regression and neural network 
models are applied for modelling of dependence between number of steel 
strength characteristics and amount of alloying elements included in that 
steel. These models are further applied for optimization of steel alloys 
composition aimed at maximization of their strength and economy of 
expensive alloying materials by using MOMP and gradient descent 
methods, respectively. 
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2. Strength Characteristics and Alloying  
Compounds of Steel 

In our investigation, we have used a data base containing  
information about 65 steel alloys available at 
http://www.splav.kharkov.com/choose_type.php. There are given 
concentrations of eleven alloying elements included in the steels (shown 
in Table 1) and values of six steel strength characteristics tested after 
thermal treatment of the steels as follows: Rm – tensile strength; Re – 
yield strength; A – elongation; Z – reduction of area; KCU – impact 
strength; and HB – Brinell hardness (presented in Table 2). Tables 1 and 
2 summarize the minimal and maximal values of the corresponding steel 
alloying elements and characteristics. Since the amount of sulphur and 
phosphorus are equal in all cases, they are considered as one variable 
(denoted by 6X ). Further in the paper, the alloying elements are denoted 
as input vector X and steel characteristics – as output vector Y. Thus, our 
models presented further in the paper have 10 input variables and 6 
outputs. 

Table 1. Minimal and maximal values of the considered steel alloys 
compounds 

  Min [%] Max [%] 

1X  C 0.12 0.52 

2X  Si 0.27 1.4 

3X  Mn 0.35 1.75 

4X  Ni 0 4.22 

5X  B 0 0.006 

6X  S/P 0.0252 0.035 

7X  Cr 0.15 2.50 

8X  Cu 0 0.3 

9X  Mo 0 1.5 

10X  V 0 0.45 
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Table 2. Minimal and maximal values of the considered steel mechanical 
characteristic 

  Min Max 

1Y  Rm, [MPa] 540 1670 

2Y  Re, [MPa] 315 1375 

3Y  A,[%] 7 25 

4Y  Z, [%] 30 67 

5Y  KCU, [KJ/m2] 290 1830 

6Y  [ ]MPa,10HB 1−∗  179 541 

3. Nonlinear Regression Modelling of 
Steel Alloys Composition 

For each of the mechanical characteristics, a polynomial regression of 
second degree 
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was derived by using the regression modelling software package BMDP. 
Statistical evaluation of models was made with a level of significance 

95.0=α  (with the exception of the model for KCU, where 90.0=α ). 
The overall model equations are as follows: 

2
9

2
4

2
31061 57.7862.3944.15455.328426.1746158.922 XXXXXY −+−−−=  

814121
2

10 16.190946.49649.46561.5047 XXXXXXX ++−−  

423210191 62.60127.49150.993877.3020 XXXXXXXX +++−  

43826252 85.671.597758.3841416.182999 XXXXXXXX −−+−  

54937363 49.7354663.149885.11811.5980 XXXXXXXX ++++  

94847464 67.17384.676.15033.5315 XXXXXXXX −−−−  

968575104 02.73933179892.11593375.612 XXXXXXXX +−+−  
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;16.480349.224558.1389 10910887 XXXXXX +++  (2) 

2
2

2
110712 4586.284632.866738.125868.273810.417 XXXXXY −−−++−=  

4121
2

10
2

7
2

4 08.12296.71926.1169372.31253.45 XXXXXXX ++−−+  

544210171 25.17180507.70055.2137215.1081 XXXXXXXX +++−  

651048474 69973055.47797.23215.249 XXXXXXXX −−−−  

;67.690792.237866.3282.2889 1081078785 XXXXXXXX ++++  (3) 

41
2
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2

77423 27.359.653.351.1649.341.271.30 XXXXXXXY +++−−−=  

4382328171 7.21.1238.635.6791.7 XXXXXXXXXX −+−−+  

105747363 09.5146401.378.385.84 XXXXXXXX +++−  

;57.012 10787 XXXX +−  (4) 
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2
114 137330008.143.2379.691.3053.62 XXXXXY −++−−=  

1018151
2

6 11.20957.6631.747339.903 XXXXXXX +++−  

9282724232 57.1057.4736.931.215.7 XXXXXXXXXX +−−+−  

541039383 29.704093.23054.3647.12 XXXXXXXX +−−−  

651047464 3397102.418.285.95 XXXXXXXX +−−−  

9810695 51.5489.57665.14713 XXXXXX +++   

;06.12662.348 109108 XXXX −−   (5) 

2
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5

2
135 9379006241300044.361371.1495.1078 XXXXY −−−+=  

615141
2

10 73.8432842565054.497055.419 XXXXXXX ++−−  

73539171 49.230696608.57643.1218 XXXXXXXX −++−  

645410393 29.701032189032.36303.2650 XXXXXXXX ++−−  

85948474 11238043.33365.3396.109 XXXXXXXX −+−−   
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978710676 5.63435.20114698016.18804 XXXXXXXX −+++  

;98.428258.5443 109108 XXXX −−  (6) 

1076526 24.33049.2483.443288.22297773.10213.285 XXXXXY ++−+−=  

41
2

10
2

9
2

4
2

3 47.5827.28099.8391.323.0 XXXXXX −+−+−  

81716151 88.10281.6766.593506.10355 XXXXXXXX −−++  

624210191 16.257864.1509.114640.625 XXXXXXXX +−−+  

84744372 48.2806.365.5292.36 XXXXXXXX −−++  

Cu92.841.128008.8846519800 7968665 XXXXXXX +−+−  

.9386.21738.24039.4141.74 1099810797 XXXXXXXX +++−  (7) 

Table 3 below summarizes the statistical characteristics of all 
nonlinear regression models. Since the inequality of multiple correlations 

TFF >  is fulfilled for all of the models, we can conclude that the 
coefficients obtained for all the regressions are statistically significant. 
From the statistical point of view, the model for HB is the best one, while 
that for KCU has lower level of significance and hence is the worst one. 

Table 3. Mean square error and multiple regression statistical 

characteristics of nonlinear regression models. Here ∗  means that this 
values are for level of significance ;90.0=α  the all other results are for 
level of significance 95.0=α  

 MSE R 1ν  2ν  F TF  

Rm 0.0927 0.8617 32 57 5.135 1.65 

Re 0.1167 0.8366 22 68 7.210 1.70 

A 0.1305 0.7651 17 73 6.064 1.84 

Z 0.1315 0.7834 27 59 3.472 1.70 

KCU 0.1159 0.6882 26 49 ∗696.1  ∗57.1  

HB 0.0252 0.9804 30 47 38.765 1.74 



N. TONTCHEV et al. 76

Figure 2 presents graphical comparison of the nonlinear regression 
models predictions with the experimental data. All values are normalized 
in the range [0, 1] in order to compare them further with ANN model 
predictions. These normalized data are also used for mean square error 
(MSE) calculation that is given in Table 3 too. 

 

Figure 2. Nonlinear regression model fitting. 

4. Neural Network Modelling of 
Steel Alloys Characteristics 

For the modelling via neural networks, the available data are scaled 
in proper interval [ ].1,0  The used neural network structure (presented in 

Figure 3) is multi-layered without feedback connections, since the 
modelled dependence is static. The neurons, transfer function is log 
sigmoid. Training procedure is resilient backpropagation. Different in 
number of layers and hidden neurons neural network structures were 
tested and the better one is chosen. It has 10:40:6 structure. The number 



STEEL ALLOYS MODELLING AND OPTIMIZATION 77

of input and output neurons correspond to the number of the input/output 
variables. The data base is separated into training and testing data sets 
with ratio of 90:10%. The obtained for these data sets mean square error 
is shown in Table 4 below. The model fitting is also shown in Figures 4 
and 5. The corresponding linear regression coefficients R and mean 
square errors (MSE) are given in Table 4. As can be seen, the training 
data is approximated very well with close to 1 regression coefficient, 
while the testing data shows worse values especially for some of the 
output variables that correspond to the higher testing MSE in Table 4. 
This could be explained by the insufficient amount of data, because 
neural networks need a lot of examples to be trained properly. Moreover, 
some of the data are not evenly distributed over the considered interval 
values or contain only two or three investigated values for some of the 
alloying components. 

 

Figure 3. Neural network model structure. 
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Table 4. Training and testing errors and linear regression coefficient of 
the ANN model 

 MSE R 

 Train Test Train Test 

Rm 0.0058 0.1930 0.9975 0.5539 

Re 0.0065 0.2611 0.9899 0.2812 

A 0.0085 0.1565 0.9788 1.2510 

Z 0.0135 0.2184 0.9795 0.5739 

KCU 0.0110 0.1778 0.9735 1.3207 

HB 0.0075 0.1417 0.9869 1.2144 

 

Figure 4. Training data model fitting. 
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Figure 5. Testing data model fitting. 

Further improvement of that model will be subject of more data 
collecting. However, even now the ANN model outperforms the nonlinear 
regression form the previous section. The results from optimization 
shown further also demonstrated considerably reasonable results in spite 
of model insufficient accuracy. 

5. Solving the Optimization Problem Using Multiple  
Objective Mathematical Programming  

Approach (MOMP) 

We have constructed a model, which has six nonlinear objective 
functions and ten decision variables. Thus, in a natural way, we derive a 
nonlinear multiple objective mathematical programming problem. The 
feasible set is one-dimensional rectangular with boundaries [1, 1]. 
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First, let us consider in brief the general formulation of the multiple 
objective mathematical programming problem (MOMP), some of its 
properties and how it can be solved. 

Mathematically, the MOMP can be formulated as 

( )
( ( ) ( )),,,max 11,0:

xfxf kmjxgSx j
…

÷=≤∈
 (8) 

where 

( ) n
n Rxxx ∈= ,,1 …  is the vector of decision variables; 

( ) ( ) 1:, RRgf n
ji →⋅⋅  are real valued functions. 

The symbol “max” means that all the objectives have to be maximized 
simultaneously. We assume also that 

 at least two objectives are conflicting; 

 decision point (solution) does not exist to optimize simultaneously 

all the objectives. MOMPs are discussed, for example, in [9, 15]. 

We say that a decision vector ( )yf  dominates a decision vector ( )xf  

iff ( ) ( )yfxf ii ≤  for ki ,,2,1 …=  and strong inequality holds for at least 

one index. 

According to the above defined orders, (Pareto) efficient and weak 
(Pareto) efficient points are defined. 

Definition 1. The solution of x is Pareto optimal, if and only if there 
do not exist another solution of y such that ( ) ( )yfxf ii ≤  for ki ,,2,1 …=  

and ( ) ( )yfxf ii <  for at least one index { ,,2,1 …=∈ Ij  }.k  

Definition 2. The solution of x is weakly Pareto optimal, if and only 
if there do not exist another solution of y such that ( ) ( )yfxf ii <  for 

.,,2,1 ki …=  
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The corresponding vector ( )xf  is called a non-dominated vector. 

The aim of solving MOMPs can be defined as supporting the decision 
maker to identify the most preferred solution in the set of efficient points. 
It is called final, best compromise solution. It is a compromise between 
conflicting objective values. To find such a solution, additional 
information is needed. It is usually given by a person: the expert/decision 
maker (DM). 

As it could expect, a number of methods exist for solving MOMP [9]. A 
straightforward way for the DM to express preferences is to specify the 
aspiration levels for the objective functions. They are desirable values of 
the objective functions and form the so-called reference point [15, 16]. 

A dialogue in the form of a classification is related to reference points. 
In classification, the DM studies a current solution and tells what kinds 
of changes are desirable, in other words, which function values are 
satisfactory at the moment, which should improve and which could 
impair (and by how much). The satisfying trade-off method - STOM [10] 
uses such a classification. When the DM has indicated desirable 
aspiration levels for the objective functions that should be improved, the 
method calculates what kinds of impairments are necessary in the other 
objective functions. In this way, the DM has to specify less information. 
However, the method sets many mathematical assumptions for the 
problem. The method generates one solution for all iteration. Despite of 
its restrictions, method STOM is very simple and understandable to use 
by the DMs. Therefore, we used it to solve our problem. 

In brief, STOM method consists of the following general steps: 

Step 1. Generate initial Pareto or weak Pareto solution. 

Step 2. The DM evaluates it and if it is not a final solution, then 

he/she is asked to classify the objective functions into three classes. They 
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are the unacceptable objective functions, whose values he/she wants to 

improve ( ),>I  the acceptable objective functions he/she accepts as they 

are ( )=I  and objective functions he/she agrees to relax ( ).<I  The DM 

has to specify the aspiration levels only for the objective functions in 

.>I  

Step 3. Solve the following scalarising function: 

[ ( ( ) )],maxmin
,,1

∗∗
=

− ii
h
ikiX

zxfw
…

 (9) 

where X is the set of decision variables that fulfills the constraints and 

the weighting coefficients are 

( ) .,,2,1for/1 , kizfw i
hr

i
h
i …=−= ∗∗   (10) 

Here, hrf ,  is the reference point at iteration h and ∗∗z  is the ideal vector. 

Let the solution found is .hx  Go to Step 2. 

The solutions of the above scalarising problem are weak efficient 

solutions. Also, it is shown that the solution is satisfying ( ( ) ≤h
i xf.,e.i  

),, hr
if  if the reference point is feasible and weighting coefficients are 

employed. 

If we cannot find exactly max if  or if  is unbounded over X, then we 

can use sufficiently large number. Also, it is necessary ., ∗∗< i
hr

i zf  

The DM performed several iterations for different aspiration levels 
and a number of efficient solutions were generated. As a result of the 
study on the efficient set, 1-2 decisions have been separated as promising 
ones. 
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Applying the above described STOM for the nonlinear regression 
models (2)-(7), the following solution is obtained and presented in Tables 
5 and 6. However, because of big MSE of the model, the results about 
steel strength characteristics are far from the reasonable intervals. So, 
the nonlinear regression model is not of quality sufficient to be applies for 
optimization purposes. 

Table 5. The optimized composition of elements from solution obtained 

Element C Si Mn Ni B S/P Cr Cu Mo V 

% 0.5 1.25 1.645 3.95 0.006 0.02 0.15 0 0.44 0.02 

Table 6. The obtained strength characteristics for the optimized steel 
composition 

Rm Re A Z KCU HB 

6745.2 8329.0 – 38.7167 242.0310 7439.2 1094.4 

6. Gradient Descent Optimization of  
Steel Alloys Composition 

Unlike the MOMP optimization procedure used here (gradient 
descent) could lead to stopping in local minima, since the explored 
input/output space is multi-dimensional and the modelling function is 
highly nonlinear. So, in order to find optimal values of input variables 
with respect to given quality criteria that comprises output variables, 
there is need to explore whole region of the input space. However, 
because of big number of possible combinations, the exhaustive search on 
whole variables space will take too much time. Because of this, we applied 
gradient optimization technique starting from several different points of 
input variables surface and compare the obtained results. 

Figure 6 below represents the optimization procedure scheme adopted 
from the so-called “backpropagation of utility” method [13]. 
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Figure 6. Optimization procedure. 

The optimization task here is defined as follows: Find values of input 

vector X that minimize/maximize the utility function 

( ),, YXJJ =   (11) 

where Y is vector of output variables that are related to the input once by 

a given usually nonlinear model function G as follows: 

( )., pXGY =   (12) 

Here, p is model parameters vector. 

Every optimization procedure needs calculation of performance 
function gradients with respect to the optimized variables as follows: 

.X
G

Y
J

X
J

dX
dJdX

∂
∂

∂
∂+

∂
∂==  (13) 

In case when J does not depend explicitly on X, the first term in 

Equation (13) is zero and thus gradient depends only on function G. 

The layered neural network structure offers a convenient way for 
calculating derivatives in Equation (13), because their training 
backpropagation method [12, 13] was developed initially as procedure for 
error derivatives calculation “propagation” from the output to the input of 
the network. From a more common point of view, it is method for a given 
function derivative calculations with respect to variables of an ordered 
system of equations [13]. Hence, it could be applied to any optimization 
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problem that can be described in appropriate way. So, application of 

neural network model trained before as function G within optimization 

scheme from Figure 6 allows easy gradient calculation by using 
backpropagation method. 

Further some gradient iterative optimization procedure could be 
applied to find optimal values of the X variables by using calculated 
derivatives as follows: 

,1 iii XXX ∆α±= −   (14) 

where α  is parameter called learning speed and iX∆  is step-change of X 

for the i-th iteration calculated as follows: 

( ).ii dXgX =∆   (15) 

Here, g is some dependence of optimized variable derivative. Usually, 
it is proportional to the derivative ,idX  but can also depend on the old 

values of .iX∆  

In the present study, we used simple gradient optimization procedure 
with identity function for g, i.e., .ii dXX =∆  The learning speed α  is set 

to a relatively small value and stopping criteria is very small change of 
performance function gradient. Since we have totally 6 output variables 
that represent different steel characteristics, we combine them in a single 
criterion by simple summation with equal weight coefficients of 1 as 
follows: 

.
6

1
k

k
YJ ∑

=

=   (16) 

In order to explore different input variables regions, several initial 
combinations of alloying components values are generated. They are 
shown in Table 7. 
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Table 7. Initial values of optimization procedure 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

C 0.1634 0.2426 0.3219 0.4011 0.4804 0.3417 0.4804 

Si 0.3806 0.6071 0.8337 1.0602 1.2867 0.9469 1.2301 

Mn 0.4869 0.7675 1.0482 1.3289 1.6097 1.2588 1.4693 

Ni 0.4136 1.2576 2.1016 2.9456 3.7896 2.9456 3.1566 

B 0.0005 0.0015 0.0025 0.0035 0.0045 0.0037 0.0035 

S/P 0.0231 0.0257 0.0284 0.0310 0.0337 0.0324 0.0304 

Cr 0.3837 0.8539 1.3243 1.7946 2.2649 2.1473 1.5594 

Cu 0.0294 0.0894 0.1494 0.2094 0.2694 0.2694 0.1644 

Mo 0.1470 0.4470 0.7470 1.0470 1.3470 1.4220 0.7470 

V 0.0441 0.1341 0.2241 0.3141 0.4041 0.4491 0.2016 

The obtained after optimization concentrations of all 10 alloying 
components are shown in Table 8. Table 9 presents the steel alloys 
strength characteristics that correspond to the optimized compositions.  

Table 8. Compounds values after optimization 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

C 0.1673 0.2354 0.2392 0.4804 0.4470 0.2134 0.2648 

Si 0.6427 0.3919 0.3919 1.2867 0.3919 0.3919 1.2823 

Mn 0.5009 0.5009 1.1820 1.6097 1.6097 1.1742 1.0663 

Ni 0.6178 3.7896 3.7896 0.4558 0.4558 3.7896 0.4558 

B 0.0011 0.0045 0.0005 0.0021 0.0026 0.0005 0.0022 

S/P 0.0245 0.0232 0.0337 0.0303 0.0337 0.0337 0.0337 

Cr 2.2649 0.4072 0.4072 2.0727 2.2649 0.6727 2.2649 

Cu 0.0324 0.0324 0.0520 0.2694 0.2694 0.0655 0.1140 

Mo 0.5961 0.1620 0.1620 1.3470 0.8717 0.1620 1.3470 

V 0.3789 0.0486 0.0645 0.0805 0.0486 0.0731 0.0486 
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Table 9. Characteristics values after optimization 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

Rm 1334.3 1621.6 1564.6 546.5 538.9 1559.1 536.5 

Re 1072.8 1268.7 1368.8 1269.5 488.8 1367.3 723.6 

A 19.7 16.7 21.1 69.0 22.1 21.2 19.6 

Z 66.7 59.4 66.5 29.7 57.8 66.5 30.2 

KCU 1719.9 1548.5 1684.4 292.6 1787.1 1703.0 1579.3 

HB 180.7 450.2 485.9 406.9 369.6 481.9 416.8 

Table 10 summarizes the training procedure iterations and achieved 

value of criterion J in normalized form. This means that maximal 

possible value of J is 6. The case with best results is marked in bold in all 

tables. The obtained results showed that the optimal values depend too 

much on the starting point that means that nonlinear dependence F has a 

lot of local optima. Of course definition of performance criterion J also is 

of big importance since by using weight coefficients, it can give preference 
to some of the strength characteristics over the others. All these will be 
issues of further investigations. 

Table 10. Optimization procedure iterations and achieved criterion value 

 Iterations Scaled 

 number criterion 

Case 1 175 4.0569 

Case 2 407 4.7620 

Case 3 952 5.4288 

Case 4 522 1.5472 

Case 5 919 3.2619 

Case 6 464 5.4245 

Case 7 1109 2.6 
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7. Conclusion 

From the presented comparative study, the following main 
conclusions are derived: 

– The exploitation of neural network properties as universal 
nonlinear approximations of complex nonlinear MIMO dependences 
allowed to model six steel alloys characteristics in dependence on ten 
alloying substances with a single model structure. Lack of sufficient data 
did not allow perfect modelling, but nevertheless, the ANN model of steel 
alloys compositions in dependence on obtained strength characteristics of 
steels outperforms the nonlinear regression model. 

– The obtained via MOMP optimization steel compound is close to 
spring structural steel, but with considerably bigger amount of Ni. Bigger 
amount of C guarantee obtaining of martensite structure that means high 
strength and low plasticity. However, since the nonlinear regression 
model approximates with bigger error, the dependence between input and 
output variables, the obtained via MOMP optimization steel 
characteristics, were not reasonable. 

– The gradient optimization technique using properties of neural 
network layered structure for derivatives calculation allowed solving of 
multi-criteria optimization task with reasonable number of iterations. 
The newly developed composition of steel, which position among other 
steels is shown in Figure 7 is close to the TRIP steel in [17], but in 
contrast to [18], it contains two times less Ni and also lower amount of 
Mo, Cr, and Si. 
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Figure 7. The obtained new steel composition position on the steels types 

chart. 

In conclusion, the comparative study definitely showed that 
intelligent approach using ANN significantly outperforms the classical 
one by using regression models. Further investigations targeted to 
including more data in training data base as well as to exploring 
exhaustively the input variables surface will allow refinement of the 
proposed methodology and obtaining of more accurate results that could 
be tested in practice. 
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